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POTENTTAL-FLOW ANALYSIS OF UNSTEADY OUTFLOW FROM
A TANK AND ITS EFFECT ON THE DYNAMICS
OF A FLUID SYSTEM

By William H. Roudebush and I. Irving Pinkel

SUMMARY

When an analytical investigation of the unsteady flow from a pro-
pellant tank was made, a simple equation was obtained that relates the
tank pressure drop to the development of the volume flow rate out of the
tank. This equation allows the incorporation of the tank characteris-
tics into a one-dimensional analysis of the dynamics of a fluld system
and mekes possible the determination of situations in which the dynamic
characteristics of the tank are important.

Including the dynamic characteristics of the tank in a system
analysis becomes more important as: (1) the ratio of liquid level to
tank radius increases, (2) the ratio of outlet radius to tank radius
increases, and (3) the ratio of outlet-pipe length to tank radius de-
creases. In traditional rocket systems the increase in accuracy ob-
tained when the dynamic properties of the tank are included is usually
only a few percent. In some systems, however, the dynamic effects of
the tank can be important.

INTRODUCTTON

In many fluid systems the tank pressure drop is a small fraction of
the pressure drop throughout the system. Errors in the estimation of
the tank pressure drop are often of little consequence. If, however,
the temperature of the liquid in the tank is near boiling and if the
liquid is flowing to a pump that is operating near its cavitation 1limit,
then small errors in the estimation of tank pressure drop can maeke large
differences in the estimation of pump performance. Furthermore, the
starting-flow tank pressure drop for a tank connected by a short pipe
to a receiver is a large part of the total system pressure drop. Under
such conditions an improvement in the accuracy of tank pressure drop
computations may be desired.



This report describes a potential-flow solution to determine the
pressure drop during the starting flow out of a tank. Thils solution is

limited to the case in which the free liquid surface in the tank is high

enough for the surface to be considered flat and moving downward with
the same speed at all points. A criterion is developed for determining
when this condition on the free liquid surface exists. An illustrative
example shows how the results of this report are used in the analysis
of the starting flow in a fluid system involving tanks, lines, valves,
and orifices.

ANATYSTS

The analysis of the tank flow 1s restricted to a nonviscous fluid,
so that real fluid effects (e.g., outlet separation) are not consldered.
It is assumed throughout the analysis that the fluld has no component
of tangential velocity. In addition to the restrictions on the fluid,
the analysis is restricted to tanks having flat bottoms.

Bernoulli Equation for Unsteady Flow

An unsteady, irrotational, incompressible flow satisfies the
Bernoulli equation (ref. 1)

g% @(X:Y:Z)t) + % QZ(X)Y:Z:t) + giZL%LELEl + yg = £(t) (1)

where g 1s the magnitude of the local velocity vector q ¢ is the
velocity potential, that is, gradient o(x,y,z,t) = q(x,y,2,t); and
f(t) is a function of -time. (All symbols are defined in the appendix
and the coordinate axes are shown in fig. 1.) Since the pressure level
in the entire flow field can be varied with time in any way without
otherwise affecting the flow, f(t) is arbitrary.

A cylindrical tank oriented as shown in figure 1 is analyzed. Two
locations on the tank centerline or y-axis, that may vary with time are
denoted by yq(t) and yp(t).

Equation (1) can be evaluated at the two locations at the same
instant and the function f(t) eliminated; the result is

2ly1(8),t] - vElya(t),t)
g% {@[Yl(t);t] - @[yz(t),t]} + MRS - velyo(t)

plyq(t),t] - plys(t),t]
§ — gy (t) - avy(t) =0 (2)

where v 1is the vertical component of velocity.
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For this analysis yz(t) is taken to be the origin of coordinates

(fig. 1), which corresponds to the center of the outlet pipe at the
bottom of the tank; therefore, yz(t) is invariant with time. Equation
(2), then, becomes

[y (t),t] - vE(0,t
%{cp[yl(t),t] - @(O,t)} L 2 - )
[y (t),t] - p(O,t
L2 vy (£) l p(0,t) ¢ gyi(t) = 0 (3)

Method of Determining Tank Potential Function

In order to proceed with the solution of equation (3), some knowl-
edge of the potential function along the y-axis is required. In what
follows @(y,t) will be determined through an approximation of the de-
sired tank flow using an infinite number of sinks.

An infinite set of three-dimensional poilnt sinks distributed in
the x,z-plane (i.e., the plane of the tank bottom) in the pattern shown
in figure 2(a) repeated indefinitely is considered. The plane passing
through points A and C perpendicular to the x,z-plane is a plane of
symmetry in the resulting flow. Since there can be no flow through this
plane without destroying the symmetry, the plane is a stream surface.
This is also true for similar planes through points B and D, points C
and E, and so forth. It follows that a hexagonal tank erected perpen-
dicular to the x,z-plane on the base, which is outlined by & solid line
in figure 2(a), is actually a stream surface of the flow. Since the
X,z-plane is alsoc a stream surface, the flow can be interpreted as the
flow out of a point in the center of the bottom of a hexagonal tasnk of
infinite length and finite dlameter (Zr&‘). The flow field induced by
the sinks is actually a honeycomb of such hexagonal tanks, but attention
is confined to the one that contains the origin of the coordinates (see
fig. 1). (It is interesting to note that there are many other planes
of symmetry and that, if the proper ones are selected for tank walls,
various other tank configurations can be obtained from this same flow
field. In particular, a hexagonal tank can be formed with outlets at
three corners instead of one outlet at the center. The results obtained
in this paper can, therefore, be applied to such a case with the obvious
difference that three times the volume flow is leaving this new tank.)

For the purpose of this investigation the point-sink approximation
(fig. 2(a)) to the flow from the tank (fig. 1) is deficient in two ways.
First, the tank is hexagonal instead of cylindrical. Since the tank
walls are a substantial distance from the outlet in most practical tanks,
however, this disadvantage i1s not considered too important. The second



and more serious drawback is the representation of the tank outlet by a
point sink, which results 1in infinitely large velocities at the outlet
and gives no indication of the possible effect of outlet radius. To
improve this situation the point sink inside the tank can be replaced

by a uniformly distributed sink that covers the actual area of the tank
outlet nr%ut (fig. 2(b)). Within the outlet area In the x,z-plane, the
uniformly distributed sink will have a constant finite vertical velocity
equal to the volume flow rate of the replaced point sink divided by the
area of the tank outlet.

It will be shown that the differences between a point sink and a
distribtuted sink diminish very rapidly beyond the immediate neighbor-
hood of the sink. With this Jjustification a great simplification is
achieved by the continued use of point sinks outside the tank. This
results in a lack of complete symmetry about the planes forming the tank
walls (see fig. 2(b)), so that the walls are distorted to some degree,
especially near the base. This distortion is expected to be negligible
for tank- to outlet-radius ratios of practical interest.

One further point needs discussion. The sink-induced flow, which
is actually the flow from an infinitely long tank of liquid, is used to
approximate the flow from a tank having a finite liquid level. The
essential features of the free-surface flow (i.e., the flow with a
finite liquid level) are the following:

(1) The pressure is constant on the free surface.
(2) The free surface is always composed of the same particles.

In general, the particles that form a constant-pressure surface at one
instant of time in the sink-induced flow will not form a constant-
pressure surface at other times. The sink-induced flow therefore de-
viates from the flow that would have resulted if the free-surface con-
ditions had been included in the analysis; however, the velocity of the
sink-induced flow is uniform across the tank at a location sufficiently
above the bottom of the tank. In this case, a surface that is normal
to the tank axis will be a constant-pressure surface and will continue
to be one as long as the veloclty remains uniform. The investigation
is therefore confined to sufficiently great liquid levels (greater than
1 tank diam), so that the sink-induced flow is a suitable substitute
for the actual free-surface flow.

Determination of Potential Function

The potential function for a single point sink located at an arbi-
trary point (x,,¥,,%2,) and having a volume flow rate of Q(t) cubic

feet per second coming from the half-space above the x,z-plane is:

29%T-4
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Qt)
2r\(x - %)% + (y - y5)2 + (2 - 2,)E

p(x,¥,2,t) = + constant  (4)

(When the first 2 in the denominator is replaced by a 4, the customary
equation for a point sink of strength Q(t) in the whole space results.)
If only the values of ¢ on the y-axis and only sinks located in the
x,z-plane are considered, equation (4) becomes

Q(t)
an chz) + y2 + zg

oly,t) = + constant (5)

If ¢y denotes the contribution of all point sinks outside the tank,
1t follows from figure 2 that

<o

t
(Pz(y,t)=Q‘(1)
2an 5 v 5
r‘ " _T 4412k
k=1 T
4
2 . 2
——,— +3(2k-l) + (25 - 1)
k=1 j=1

+ constant (8) .

J + 12k% + 43°
k=1 Jj=1 TT

where the terms in thelr respective order represent the sinks on the
z-axis, the sinks on the x-axls, the sinks on the odd-numbered rows,
and the sinks on the even-numbered rows. In its present form the

series (eq. (6)) diverges for all values of y/rT If, however, an

appropriate constant is associated with each individual sink, the
result is the following convergent serles:



osly,t) = ) [ _2 -2 |+ __=®
) ZﬂrT _L)Z . 4}:2 \/4}{2 (L 2 . 12k2 leZ
k=1 I'riv k=1 rT
- ) 4
ﬁ +32k-1)2+(23-1)2 Valax - 1)2 + (23 - 1)?

+ 122 + 432 Viad + 4

The distributed sink about the origin is obtained in the following
way. If 14,y denotes the radius of the outlet pipe, the volume flow

rate per unit area in the outlet is Q/“rout' If s= VYx 2 + z& and
6 = tan” -1 % are polar coordinates in the plane of the outlet, the

volume flow rate through an increment of area s A6 As 1is

(Q/nrout)s A6 As. According to equation (5), the contribution to the po-
tential function on the y-axis, which arises from the increment s A6 As
of area in the outlet region, is approximately

Ag s /9 As
Tout

it VS2+y2

where the sink is assumed to be located at a single point within the
increment of area. The potential function, arising from sinks uniformly
distributed over the entire outlet area, is obtalned when the varilous
contributions (similar to the one Just mentioned) are summed and As

and 29 approach zero. This potentlal is denoted by @.; the result
is the integral

out
—L—l— s ds do
out
0u(yst) = 2 + constant (8)
+

y
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When equation (8) is integrated and when the arbitrary constant 1s dis-
regarded,

1 2 2 2

gelirye) = L (27 ) 80 (TE Y| ffrone) (0N
c “rgut ou nrm Tout T T T
(9)

For y > r,,4 equation (9) can be expanded in terms of rgut/yz as

2 4
Q(t) 1 Tout , 1 Tout
9o (y,t) = t (-— = +5 S I ) (10)

u
2ny 12 74

The first term on the right side 1s the equivalent of a point sink at
the origin (see eq. (5)). The difference in the effects of a point
sink and a distributed slink on the potential function 1s less than

rgut/4y2, or approximetely 1 percent at 5 tank-outlet radii above the

center of the distributed sink. This result tends to Jjustify the use
of point sinks instead of distributed sinks outside the tank.

From equations (7) and (9) it is seen that @ré/Q, where

9T _ BT PETT
§ - @ "7a

H
depends only on y/r& and rout/r&. In fact, rout/r& only affects
the value of @cr&/Q.

The velocities induced along the y-axls by the external sinks and

by the central sink are obtalned by differentiating equations (7) and
(9), respectively:

rhsv (y,t) - 2 -3/2 - 2 _3/2
Tz ' X 2 XL 2
T TR (T) Z[(T) : “‘] ’ Z (T) "

© k=l

o © -
2

22
® [ . -3/
+ Z Z 2(%;) +12k2+4j:| (11)

-3/2
+3(2k - 1)2 + (23 - 1)2]




= + L — -1 (12)
Tout

12 1 \2 2 -1/2
I‘T VC(Y)T') _ ; I’T ) l rout yz /
Q(t) T ro\rde vkl

Computations. - Since the series (eq. (7)) converges slowly, it is
not very useful for computations. In order to obtain values of oy,

the velocity vy was first computed by means of equation (11). With

vy @as a function of ¥y, it was possible to integrate and get P Equa-

tion (7) was used to spot check the values of ¢y, obtained by integra-
tion.

Figure 3 shows the calculated variations of r&mZ/Q and r%¢C/Q
with y/ré for two extreme values of rout/ré' For all values of
y/ri greater than 2.0 (1 tank diam), the effect of 1,
The effect of ¢, on the variation of the total potential function

' .
/rT disappears.

¢, * @y 1s large near the outlet but rapidly diminishes when y/rp in-
creases. The effect of ¢y on the variation of ¢, + ¢y 1s small near

the outlet, but ¢y quickly becomes the principal element. The sum of
these two potentials is nearly linear from a value of y/r% of approxi-~
mately 1.5.

Figure 4 shows the variation of the velocity ratio V/V along the
tank axis, where V = -Q/21/§ r%z is the megnitude of the velocity far

up in the tank. (The minus sign occurs because the flow direction is
opposite to the positive y-axls.) Two extreme values of rout/rf were

used in equations (11) and (12) to obtain the plot. The entire velocity
is shown 1n figure 4(a), and the contributions of the external sinks

and of the central sink are shown separately in figure 4(b). The fig-
ure shows that the velocity at the centerline of the tank qulckly ap-
proaches the uniform-flow velocity with increasing height above the
outlet, In fact, v (the total velocity in fig. 4(a)) is within 1 per-

1

cent of V by y/rT = 1.5. This indicates that essentially uniform

flow 1s occurring less than 1 tank diameter up from the bottom, if it is
assumed that maximum deviation occurs at the center of the tank. This
result is not affected by the value of rout/ré' The use of the sink

flow for tank liquid levels of 1 diameter or more is justified.

Potential-function difference o(y,t) - 9(0,t). - Consider only
those values of y so far above the tank outlet that the flow is uni-

form and has the velocity v = V. Since v = %%, ¢ 1s independent of

x and z and varies linearly with y for all such large values of y.

J9%T-4
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Therefore,
o(y,t) = 0o(y,8) + ox(y,t) = Vy + Ay (13)

where A, 1s independent of y. Equation (13) is valid only for those

values of y so large that the flow at that level can be considered
uniform. The value of A, can be determined from previously computed
values of ¢, * @y, which are presented in figure 3, as follows. Slnce

Q = -2+/3 r%ZV, equation (13) can be rewritten as

r&‘(CPC + q)z) B -1 ha + I‘u:'[le

Q T 24/3 T Q (14)

When the value of réAO/Q is determined from the values given in fig-

ure 3 in such a way that equation (14) fits the straight portion of the
curve, equation (14) becomes

o(y,t) = 9. (¥,t) + op(y,t) = Q(f') (o. 344 - 2 _Y_) (15)

I‘T Z-Jg I'&l

Equation (15) is a valid expression for ¢(y,t) as long as y 1s suf-
ficlently large.

Since @Z(O,t) = 0, the value of o(y,t) at y = O derived from
equation (9) is

9(0,1) = g (0,8) = &) (;T—Tt—) (16)
I'TT( ou

When equations (15) and (16) are combined, the result is

oly,t) - p(0,t) = UL (0.344 NN A ) (17)

i 21/3 r& T Tout

Tp
which is valid for all y sufficiently large.

Simplified Bernoulli Equation for Unsteady Tank Flow

As long as yl(t) is sufficiently large, equation (17) can be used
in equation (3) to give



H 14
2 (ozaa -2 Y1 rlagr) 1 (12fr 2(t)
T V3 vy 7 Tout) 2dry 72 rt

Tout

N p(y1) - p(0)
P

where

Q = -24/3 12 v(yy) = -nrZ v(0)

z 2 14
vely) - vEO) aff ae) | fae) \ | _ QB (, zerE
2 ZN\2+fs r}? s 247, né r4

T

and

Since ré is a characteristic dimension of a hexagonal tank, it is
convenient to replace ré with an equivalent radius T (i.e., the
radius of a cylindrical tank of equal cross-sectional area). Since
2+/3 r&z = nré equation (18) becomes

TJ
4
1 T 1 Y1\ aq(t 1 I
T(OSGl';r—t';r) ol 24(4 - )QZ“)
T 27 7 \Tout
p(y,) - p(0)
lp +gyl=0 (20)

Equation (20) is the principal equation of this analysis and in-
cludes, with some simplificatlons, the effect of the tank dynamics in
the expression for the tank pressure drop. The form of the equation is
typical of a one-dimensional system analysis and 1s easily incorporated
into such an analysis. It should be remembered that equation (20)

applies only for values of ¥ of approximately 1 tank diameter or more.

To use this equation in tank-flow analyses, yl(t) is taken equal

to Y(t), which is the height of the free surface (i.e., the depth of
the liquid in the tank). In this case equation (20) has two unknowns,
Y(t) and Q(t), which are related by means of the differential equation.

(21)

29vT-d
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In general, equations (20) and (21) can be solved simultaneously when
p(Y) - p(0) is given or determined by one or more additional differential
equations. For starting transients of very short duration, however, the
change in Y is negligible and equation (20) can be used alone.

Dynamics of Tank and Line

If the tank flow is considered steady as in a simplified system
analysis, Bernoulli's equation can be used to obtain

4
for  gZ(4) (rT _ 1) - Y (22)
t

P ZKZr% rgu

The increased accuracy of equation (20) over equation (22) is entirely
in the coefficient of aQ(t)/dt.

Now if a pipe of radius r and length L 1s attached to the

out
outlet, the pressure drop along the pipe is

Ap
o _Ldun), B q¥(s) (23)
e Tout 4Tyt

The total drop in pressure across the tank and across the length of pipe
L 1s

4
Pror 1 ( rol )dQ(t) r L Q2(t) + — (rT - 1) Q%(t) - eY

T 2 dt YA} 24 4
P T \"Tout 4TSt 2n°ry \Iout

(24)

If equation (20) is used instead of the steady-flow Bernoulli equation
(eq. (22)), the expression for pressure drop becomes

p ]\ xrl T Tout 457CrD

Ap T T
Pror 1 (Fib 1 TT A d§§}>+ LE o2
out T Fout

4
xr
+ ( = - 1) Q3(t) - g  (25)
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Equations (24) and (25) differ only in the coefficient of aqQ(t)/at.
If Kpop denotes this coefficient in equation (25),

rob T T r
Krpo =L g +1 T 1Y ggm) o (2 L T +}--1.134)
T Yoyt NI 1rp\Tout Tout Tout IT

If the part of the coefficient that is attributable to the tank is de-

noted by K, &
Trp Y i
+ = - 1.134 @

Kp Tout IT

(26)

= T 2 r
fror (RN L TR LY g,
Tout/ Tp Tout TT

This ratio is a measure of the effect of the tank on the system dynamics
and depends on the three ratios rout/rT’ Y/rT, and L/rT.

Figure 5 is a plot of this ratio of coefficients. For any values -
of liquid level ratio Y/rT and outlet-radlus ratio rout/rT’ the ef-

fect of including the tank dynamics falls off quickly as the outlet-
pipe-length ratio L/rT increagses. The effect of the tank is greatest

for the largest values of Y/rT and rout/rT' For most cases of in-

terest it appears from figure 5 that the effect of the tank is small.
The tank begins to make a significant difference in the coefficient of
dQ/dt for elther very short outlet pipes or large liquid levels.

SAMPLE CALCULATION

In order to examine the effect of the unsteady flow term in a
specific case, the following example 1s considered. Figure 6 is a sche-
matic diagram of a part of a simple rocket system. The tank containing
one of the propellants, the line that leads from the tank to the com-
bugtion chamber, the valve, and the injector are the only parts involved.

The pressure change from the ullage space in the tank (station 1)
to the tank outlet (station 2) 1s given by equation (20) with y; = Y:

4

- T r

PiPz 1 (i T +-l-l-o.361)dQ(tl+ e A GO R
oL rpg\ T ot T Tm dt Zﬂerg rgut

(27)
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The change in pressure from the tank outlet to the valve inlet
(station 3) is given by (ref. 2)

Po - P
2 2. L dal . I () (28)
Toutd an Toutb

The change in head across the valve is given by reference 2 as

Pz = Py
rg

= RyQ°(t) (29)

In this example, valve reslstance varies from that for a near off posi-
tion, which just supports combustion, to that for a full on position,
which admits the design volume flow rate. The resistance of the valve
is a function of the valve design and varies with time in a prescribed
way.

The change in pressure across the injector 1s given by

Py - Ps

g " Rianz(t) (30)

where @inj is injector resistance, a constant depending only on the
particular design.
The temperature in the rocket chamber is assumed constant, and the

throat is assumed to be choked. In this case the chamber head is
directly proportional to the volume flow rate (ref. 2)

Ps _
i chQ(t) (31)

If equations (29) to (31) are added together, the result is

D r r
_;=_l_<_1_1+;__2"_+;_£_0,361)%ﬂ

P T
pg  Tpé Ty Tout " r&t

r
el [T g4 IDE Ry *+ Ripns|Q3(t) + RpQ(t) - ¥ (32)
onlrig\rs 4%y +nd ¢

T& Fout Tout8

As liquid flows from the tank, the surface level Y changes;
therefore, equation (32) must be used in conjunction with equation (21)
to obtain a solution. A solution is first obtained, however, when this
change in Y 1is ignored.
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If Y is a constant, equation (32) can be solved numerically when
the tank pressure P and the valve resistance @V are prescribed as

functions of time. If p; 1s taken to be constant and the change in

Ry 1s taken to be a step change, equation (32) can be solved in a
closed form.

The following values are assumed and are consistent with a 15,000-
pound-thrust rocket:

Tenk pressure, Py, 1b/sq in. o v ¢ o v o v v o v v o o ..o .. 500
Design chamber pressure, ps(t) &s t -, 1b/sqin. . . . .. .. 338
Design flow rate, Q(t) as t - ®, cu ft/sec . . « « . + « . . . 0.534
Starting flow rate, cu ft/s€c + v v ¢« v ¢ ¢ o « 4 + e e+ « » o 0,053
Injector resistance, Ry, SECZ/FEY . 4 i i 4 s s e e v« s s .. 578
Tank radius, rp, f£ . . ¢ . v 0o v v v v v e v v v e e e w0 LS
Tiquid level, Y, f£ . & ¢ o o o ¢« v o o o o s 2 ¢ o o ¢« v+ =« » « « 9.0
Outlet radius, r, i, v ¢ O Y
Constant of proportionality for rocket chamber, R.y, sec/sq ft . . 1288
Pipe length, L, ft « ¢« ¢ ¢« o ¢ o 4o o «+ v o o o « o o o s o o ¢ o . 15

Gravitational constant, g, ft/secZ . . . . v v v v v v v o 0 . .. 32.2
Friction factor, f, dimensionless . « « o o « o o o o s » « » o 0.025

Valve resistance in open positicn, @V’ secz/ft e s« s « w s . . 606
Propellant density, o, slugs/cu v -4

When these values are substituted in equation (32), the result is

49 _ 1354 - 1701Q - 1568Q2
rEd Q Q (33)

With @ = 0.053 cublc foot per second at t = 0, equation (33) has the
solution

Q = 1.076 tanh (1687t + 0.623) - 0.542 (34)
If the effect of the tank dynamics is neglected, the solution is
Q = 1.076 tanh (1938t + 0.623) - 0.542 (35)

Both of these results (egs. (34) and (35)) are plotted in figure 7.
A maximum difference of about 5 percent occurs in the volume flow rates
for the two equations. Larger values of outlet radius will increase
this difference, and larger values of pipe length will diminish 1t.

In this problem the time interval of interest is about 0.002 second

(see fig. 7). During thls time, the change in Y is less than 0.00015
foot. Since such a change would have a negligible influence on the

297 T-d
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simultaneous numerical solution of equations (32) and (21), the treat-
ment of Y as a constant is justified. In many practical cases, Y 1is
much smaller than pl/pg in equation (32), so that the variation of Y

can hardly be a factor of importance. In other cases, however, pl/pg
is small, and the variation of Y with time may not be negligible.

CONCLUSIONS

The following conclusions were drawn from an analytical investi-
gation of the unsteady flow from a propellant tank:

1. A method 1s presented for finding the unsteady potential flow
from a tank. The result is used to develop an equation relating the
pressure drop (from the free surface of the liquid to the tank outlet)
to the rate of change of volume flow. This equation allows the in-
clusion of tank dynamic effects in a system analysls, or the determina-
tion of the error involved in the treatment of the tank flow as steady.

2. The importance of including the tank dynamics in a system
analysis increases as:

(a) The ratlo of liquid level to tank radius increases

(b) The ratio of outlet radius to tank radius increases

(c) The ratio of outlet-pipe length to tank radius decreases
Lewis Resgearch Center

Natlonal Aeronautics and Space Administration
Cleveland, Ohio, Aprill 26, 13962
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ch

constant

APPENDIX - SYMBOLS

term in linear equation for ¢(y,t) at large vy,

8q ft/sec

dimensionless friction factor

arbitrary function of time

gravitational constant, ft/sec

2

sumation index

coefficient of dQ/dt in expression for pressure drop across a

tank and line, £t~2

coefficlent of dQ/dt

summation index

length of outlet line, ft

Pressure, lb/sq ft

pressure
presgsure
pressure
pressure
pressure
pressure
pregsure

pressure

at free surface of liquid in tank, 1b/sq ft

at center of tank bottom, 1b/sq ft

upstream of valve, 1b/sq ft

downstream of valve, 1b/sq ft

in rocket chamber, 1b/sq ft

drop along tank-outlet line, 1b/sq ft

drop from tank free surface to tank outlet, lb/sq ft

drop across tank and outlet line, 1b/sq ft

volume flow rate, cu ft/sec

magnitude of velocity vector, ft/sec

local velocity vector, ft/sec

constant

of proportionality for rocket chamber, sec/sq ft

in expression for tank pressure drop, £t-3
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2P

Hi-1l404

Rinj

Tout

T

J1

Y2

resistance of Ilnjector, secz/f
resistance of valve, secZ/SQ T
radius of tank-outlet line, ft

radius of tank, ft

one-half the width of hexagonal tank, ft

polar coordinate, radians
time, sec

velocity far up in tank, ft/se

.t5

t

C

vertical component of velocity, ft/sec

vertical component of velocity induced by central distributed

sink, ft/sec
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vertical component of velocity induced by infinite set of point

sinks, ft/sec
coordinate axis (fig. 1), Tt
x-coordinate of typical point
y-coordinate of free surface,
coordinate axis (fig. 1), ft
y-coordinate of typical polnt
arbitrary location on y-axis,
arbitrary location on y-aXxis,
coordinate axis (fig. 1), ft
z-coordinate of typical point
polar coordinate, radlans
density, slugs/cu ft

velocity potential, sq ft/sec

sink, ft

ft

sink, ft
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Do velocity potential of central dlstributed sink, sg ft/sec
Py veloclty potential of infinite set of point sinks, sq ft/sec
REFERENCES

1. Stoker, J. J.: Water Waves. Interscience Publ., Inc., 1957.

2. Krebs, Richard P.: Effect of Fluld-System Parameters on Starting
Flow in a Liquid Rocket. 1IN 4034, 1957.
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(b) Central distributed sink.

Figure 2. = Pattern of sinks used to obtain flow from

hexagonal tank.
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Dimeneionless potential function
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L |l ———— Central 0.01 } rto./a ]
1 — Central .5 e
|
L+ —— External —-——— TQQZ/Q —
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N
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Distance up from tank bottom, y/r}

Figure 3. - Contribution of central distributed sink and external
point sinks to potential function.



Veloelty ratio, v/V
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{a) Sum of velocities induced by central sink and
external sinks.
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—— — Central .01
Central .5 ]

—--— External —-——
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{v) Separate contributions of central and external
s8inks to induced velccity.

Figure 4. - Veloclty distributlion along tank centerline.
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Station
A teendg nE Lt 1l - Liquid surface
—————— 2 - Center of tenk bottom

Valve inlet

W
1

4 -~ Valve exit

w
]

Rocket chamber

Figure 6. - Schematlc diagram of part of sim-
ple rocket system.
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Ratio of volume flow rates, Q/Q
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1.0 ey

S,

o4

\-\\

2
— — —  Tank dynamics neglected (eq. (35)) __|
— —  Tank dynamics included (eq. (34))
I ]

0 . 4 8 1.2 1.6 2.0

Time, msec

Figure 7. -~ Comparison of development of volume flow rate includ-

ing and neglecting unsteady tank flow.

NASA-Langley, 1962 K-1462
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